Our history of innovation is built on forming and fostering high-potential collaborations with industry and academic partners to accelerate the transformation of new scientific discoveries into meaningful clinical and medical advances.
Here's how we are partnering, today and in the future.
- Scientific collaborations
- Business development
- Licensing
- Advocacy and public affairs
You can find the full list of Kyowa Kirin’s Group partners here.
Business development
Kyowa Kirin's vision is to contribute to human health and wellbeing worldwide through innovative drug discovery and global commercialization.
We fulfill this vision through diligent and continuous efforts to bring innovative pharmaceuticals to patients, utilizing our R&D knowledge and expertise as well as commercial capabilities. These capabilities are also available to help external partners enhance the value of their pharmaceutical innovations in the same areas of focus: nephrology, oncology, immunology & allergy, the central nervous system (CNS), and rare disease.
Kyowa Kirin’s history in North America was shaped by business development deals and joint ventures of all sizes. We work with prospective partners to understand how our strengths match their needs. Our custom alliance management approach helps to ensure that both partners can evaluate progress and optimize business results.
To start a dialogue, please email busdev.na@kyowakirin.com
Technology licensing
The potential of our antibody technology and expertise extends beyond our own pipeline. BioWa is a dedicated team of alliance managers who work to license the following technologies to other industry partners with promising drug candidates.
For POTELLIGENT®, Complegent® and AccretaMab® licensing inquiries, please complete this form.
POTELLIGENT®
The elimination of fucose from sugar chains on an antibody has forever changed the art and science of therapeutics. BioWa has harnessed the ability to create 100% fucose-free monoclonal antibodies, thereby enhancing antibody-dependent cellular cytotoxicity (ADCC), the critical factor in anti-tumor activity.
This breakthrough antibody technology:
- Dramatically enhances the potency and efficacy of antibodies. Clinical results with Potelligent®-enhanced antibodies are expected to show higher efficacy in human patients when compared with antibodies that have not been enhanced
- Increases Fc receptor binding – overcomes the problem of low clinical responses due to genetic differences in the Fc receptor
- Lowers the effective therapeutic dose of your antibodies — the potential to deliver much more with much less
- Creates antibodies that are expected to be proven safe and well tolerated, with no immunogenic concerns
- Requires no change in your current manufacturing process — BioWa’s proprietary technology works seamlessly with the systems and processes you already have in place
- Reduces costs of goods (COGs)
COMPLEGENT®
COMPLEGENT® technology is a new technology developed by Kyowa Hakko Kogyo Co., Ltd. (now Kyowa Kirin Co., Ltd.). It enhances complement-dependent cytotoxicity (CDC), one of the major mechanisms of action of an antibody.
AccretaMab®
The AccretaMab® platform — antibodies created by using Potelligent® and Complegent® technologies — delivers the ultimate enhanced antibody therapeutics (with enhanced antibody-dependent cellular cytotoxicity [ADCC] and complement-dependent cytotoxicity [CDC]).
BioWa is the exclusive worldwide licensor of Potelligent® Technology, Complegent® Technology and the AccretaMab® platform.
References
- Antoniu SA. Mogamulizumab, a humanized …. Curr Opin Mol Ther. 2010;12(6):770-779. PMID: 21154168. https://www.ncbi.nlm.nih.gov/pubmed/21154168.
- Beck A, Reichert JM. Marketing approval of mogamulizumab ….
. 2012;4(4):419-425. doi: 10.4161/mabs.20996. https://www.ncbi.nlm.nih.gov/pubmed/22699226. - Busse WW, Katial R, Gossage D, et al. Safety profile, pharmacokinetics…. J Allergy Clin Immunol. 2010;125(6):1237-1244 e1232. doi: 10.1016/j.jaci.2010.04.005. https://www.ncbi.nlm.nih.gov/pubmed/20513521.
- Cardarelli PM, Moldovan-Loomis MC, Preston B, et al. In vitro and in vivo characterization of MDX-1401 …. Clin Cancer Res. 2009;15(10):3376-3383. doi: 10.1158/1078-0432.CCR-08-3222. https://www.ncbi.nlm.nih.gov/pubmed/19401346.
- Cardarelli PM, Rao-Naik C, Chen S, et al. A nonfucosylated human antibody to CD19 …. Cancer Immunol Immunother. 2010;59(2):257-265. doi: 10.1007/s00262-009-0746-z. https://www.ncbi.nlm.nih.gov/pubmed/19657637.
- Herbst R, Wang Y, Gallagher S, et al. B-cell depletion …. J Pharmacol Exp Ther. 2010;335(1):213-222. doi: 10.1124/jpet.110.168062. https://www.ncbi.nlm.nih.gov/pubmed/20605905.
- Iida S, Misaka H, Inoue M, et al. Nonfucosylated therapeutic IgG1 antibody …. Clin Cancer Res. 2006;12(9):2879-2887. doi: 10.1158/1078-0432.CCR-05-2619. https://www.ncbi.nlm.nih.gov/pubmed/16675584.
- Ishida T, Joh T, Uike N, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) …. J Clin Oncol. 2012;30(8):837-842. doi: 10.1200/JCO.2011.37.3472. https://www.ncbi.nlm.nih.gov/pubmed/22312108.
- Ishida T, Ueda R. Antibody therapy …. Int J Hematol. 2011;94(5):443-452. doi: 10.1007/s12185-011-0941-5. https://www.ncbi.nlm.nih.gov/pubmed/21993874.
- Ishii T, Ishida T, Utsunomiya A, et al. Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 …. Clin Cancer Res. 2010;16(5):1520-1531. doi: 10.1158/1078-0432.CCR-09-2697. https://www.ncbi.nlm.nih.gov/pubmed/20160057.
- Ito A, Ishida T, Utsunomiya A, et al. Defucosylated anti-CCR4 monoclonal antibody …. J Immunol. 2009;183(7):4782-4791. doi: 10.4049/jimmunol.0900699. https://www.ncbi.nlm.nih.gov/pubmed/19748990.
- Ito A, Ishida T, Yano H, et al. Defucosylated anti-CCR4 monoclonal antibody …. Cancer Immunol Immunother. 2009;58(8):1195-1206. doi: 10.1007/s00262-008-0632-0. https://www.ncbi.nlm.nih.gov/pubmed/19048251.
- Junttila TT, Parsons K, Olsson C, et al. Superior in vivo efficacy of afucosylated trastuzumab …. Cancer Res. 2010;70(11):4481-4489. doi: 10.1158/0008-5472.CAN-09-3704. https://www.ncbi.nlm.nih.gov/pubmed/20484044.
- Kanda Y, Yamada T, Mori K, et al. Comparison of biological activity among …. Glycobiology. 2007;17(1):104-118. doi: 10.1093/glycob/cwl057. https://www.ncbi.nlm.nih.gov/pubmed/17012310.
- Kanda Y, Yamane-Ohnuki N, Sakai N, et al. Comparison of cell lines …. Biotechnol Bioeng. 006;94(4):680-688. doi: 10.1002/bit.20880. https://www.ncbi.nlm.nih.gov/pubmed/16609957.
- Kolbeck R, Kozhich A, Koike M, et al. MEDI-563, a humanized anti-IL-5 receptor alpha mAb …. J Allergy Clin Immunol. 2010;125(6):1344-1353 e1342. doi: 10.1016/j.jaci.2010.04.004. https://www.ncbi.nlm.nih.gov/pubmed/20513525.
- Kubota T, Matsushita T, Niwa R, et al. Novel anti-Tn single-chain Fv-Fc fusion proteins …. Anticancer Res. 2010;30(9):3397-3405. PMID: 20944114. https://www.ncbi.nlm.nih.gov/pubmed/20944114.
- Kubota T, Niwa R, Satoh M, et al. Engineered therapeutic antibodies …. Cancer Sci. 2009;100(9):1566-1572. doi: 10.1111/j.1349-7006.2009.01222.x. https://www.ncbi.nlm.nih.gov/pubmed/19538497.
- Masuda K, Kubota T, Kaneko E, et al. Enhanced binding affinity for …. Mol Immunol. 2007;44(12):3122-3131. doi: 10.1016/j.molimm.2007.02.005. https://www.ncbi.nlm.nih.gov/pubmed/17379311.
- Matsumiya S, Yamaguchi Y, Saito J, et al. Structural comparison of fucosylated …. J Mol Biol. 2007;368(3):767-779. doi: 10.1016/j.jmb.2007.02.034. https://www.ncbi.nlm.nih.gov/pubmed/17368483.
- Matsushita T. Engineered therapeutic antibodies …. Korean J Hematol. 2011;46(3):148-150. doi: 10.5045/kjh.2011.46.3.148. https://www.ncbi.nlm.nih.gov/pubmed/22065966.
- Mori K, Iida S, Yamane-Ohnuki N, et al. Non-fucosylated therapeutic antibodies…. Cytotechnology. 2007;55(2-3):109-114. doi: 10.1007/s10616-007-9103-2. https://www.ncbi.nlm.nih.gov/pubmed/19003000.
- Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, et al. Engineering Chinese hamster ovary cells …. Biotechnol Bioeng. 2004;88(7):901-908. doi: 10.1002/bit.20326. https://www.ncbi.nlm.nih.gov/pubmed/15515168.
- Nakagawa T, Natsume A, Satoh M, Niwa R. Nonfucosylated anti-CD20 antibody …. Leuk Res. 2010;34(5):666-671. doi: 10.1016/j.leukres.2009.10.029. https://www.ncbi.nlm.nih.gov/pubmed/20022111.
- Natsume A, Niwa R, Satoh M. Improving effector functions of antibodies …. Drug Des Devel Ther. 2009;3:7-16. PMID: 19920917 https://www.ncbi.nlm.nih.gov/pubmed/19920917.
- Natsume A, Wakitani M, Yamane-Ohnuki N, et al. Fucose removal from complex-type oligosaccharide …. J Immunol Methods. 2005;306(1-2):93-103. doi: 10.1016/j.jim.2005.07.025. https://www.ncbi.nlm.nih.gov/pubmed/16236307.
- Natsume A, Wakitani M, Yamane-Ohnuki N, et al. Fucose removal from complex-type oligosaccharide …. J Biochem. 2006;140(3):359-368. doi: 10.1093/jb/mvj157. https://www.ncbi.nlm.nih.gov/pubmed/16861252.
- Niwa R, Hatanaka S, Shoji-Hosaka E, et al. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 …. Clin Cancer Res. 2004;10(18 Pt 1):6248-6255. doi: 10.1158/1078-0432.CCR-04-0850. https://www.ncbi.nlm.nih.gov/pubmed/15448014.
- Niwa R, Natsume A, Uehara A, et al. IgG subclass-independent improvement …. J Immunol Methods. 2005;306(1-2):151-160. doi: 10.1016/j.jim.2005.08.009. https://www.ncbi.nlm.nih.gov/pubmed/16219319.
- Niwa R, Sakurada M, Kobayashi Y, et al. Enhanced natural killer cell binding …. Clin Cancer Res. 2005;11(6):2327-2336. doi: 10.1158/1078-0432.CCR-04-2263. https://www.ncbi.nlm.nih.gov/pubmed/15788684.
- Niwa R, Shoji-Hosaka E, Sakurada M, et al. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 …. Cancer Res. 2004;64(6):2127-2133. doi: 10.1158/0008-5472.can-03-2068. https://www.ncbi.nlm.nih.gov/pubmed/15026353.
- Okazaki A, Shoji-Hosaka E, Nakamura K, et al. Fucose depletion from human IgG1 oligosaccharide …. J Mol Biol. 2004;336(5):1239-1249. doi: 10.1016/j.jmb.2004.01.007. https://www.ncbi.nlm.nih.gov/pubmed/15037082.
- Satoh M, Iida S, Shitara K. Non-fucosylated therapeutic antibodies …. Expert Opin Biol Ther. 2006;6(11):1161-1173. doi: 10.1517/14712598.6.11.1161. https://www.ncbi.nlm.nih.gov/pubmed/17049014.
- Shibata-Koyama M, Iida S, Misaka H, et al. Nonfucosylated rituximab …. Exp Hematol. 2009;37(3):309-321. doi: 10.1016/j.exphem.2008.11.006. https://www.ncbi.nlm.nih.gov/pubmed/19218011.
- Shibata-Koyama M, Iida S, Okazaki A, et al. The N-linked oligosaccharide …. Glycobiology. 2009;19(2):126-134. doi: 10.1093/glycob/cwn110. https://www.ncbi.nlm.nih.gov/pubmed/18952826.
- Shinkawa T, Nakamura K, Yamane N, et al. The absence of fucose …. J Biol Chem. 2003;278(5):3466-3473. doi: 10.1074/jbc.M210665200. https://www.ncbi.nlm.nih.gov/pubmed/12427744.
- Shoji-Hosaka E, Kobayashi Y, Wakitani M, et al. Enhanced Fc-dependent cellular cytotoxicity …. J Biochem. 2006;140(6):777-783. doi: 10.1093/jb/mvj207. https://www.ncbi.nlm.nih.gov/pubmed/17038352.
- Tobinai K. Clinical trials for …. Semin Hematol. 2010;47 Suppl 1:S5-7. doi: 10.1053/j.seminhematol.2010.01.015. https://www.ncbi.nlm.nih.gov/pubmed/20359583.
- Tobinai K, Takahashi T, Akinaga S. Targeting chemokine receptor CCR4 …. Curr Hematol Malig Rep. 2012;7(3):235-240. doi: 10.1007/s11899-012-0124-3. https://www.ncbi.nlm.nih.gov/pubmed/22538464.
- Ward E, Mittereder N, Kuta E, et al. A glycoengineered anti-CD19 antibody …. Br J Haematol. 2011;155(4):426-437. doi: 10.1111/j.1365-2141.2011.08857.x. https://www.ncbi.nlm.nih.gov/pubmed/21902688.
- Yamamoto K, Utsunomiya A, Tobinai K, et al. Phase I study of KW-0761…. J Clin Oncol. 2010;28(9):1591-1598. doi: 10.1200/JCO.2009.25.3575. https://www.ncbi.nlm.nih.gov/pubmed/20177026.
- Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, et al. Establishment of FUT8 knockout Chinese hamster ovary cells…. Biotechnol Bioeng. 2004;87(5):614-622. doi: 10.1002/bit.20151. https://www.ncbi.nlm.nih.gov/pubmed/15352059.
- Yamane-Ohnuki N, Satoh M. Production of therapeutic antibodies …. MAbs. 2009;1(3):230-236. doi: 10.4161/mabs.1.3.8328. https://www.ncbi.nlm.nih.gov/pubmed/20065644.
- Yamane-Ohnuki N, Yamano K, Satoh M. Biallelic gene knockouts in …. Methods Mol Biol. 2008;435:1-16. doi: 10.1007/978-1-59745-232-8_1. https://www.ncbi.nlm.nih.gov/pubmed/18370064.
- Yano H, Ishida T, Imada K, et al. Augmentation of antitumour activity …. Br J Haematol. 2008;140(5):586-589. doi: 10.1111/j.1365-2141.2007.06947.x. https://www.ncbi.nlm.nih.gov/pubmed/18205860.
- Yano H, Ishida T, Inagaki A, et al. Defucosylated anti CC chemokine receptor 4 monoclonal antibody …. Clin Cancer Res. 2007;13(21):6494-6500. doi: 10.1158/1078-0432.CCR-07-1324. https://www.ncbi.nlm.nih.gov/pubmed/17975162.
- Kaneko E, Niwa R. Optimizing therapeutic …. BioDrugs. 2011;25(1):1-11. doi: 10.2165/11537830-000000000-00000. https://www.ncbi.nlm.nih.gov/pubmed/21033767.
- Kubota T, Niwa R, Satoh M, et al. Engineered therapeutic antibodies …. Cancer Sci. 2009;100(9):1566-1572. doi: 10.1111/j.1349-7006.2009.01222.x. https://www.ncbi.nlm.nih.gov/pubmed/19538497.
- Natsume A, In M, Takamura H, et al. Engineered antibodies of IgG1/IgG3 mixed isotype …. Cancer Res. 2008;68(10):3863-3872. doi: 10.1158/0008-5472.CAN-07-6297. https://www.ncbi.nlm.nih.gov/pubmed/18483271.
- Natsume A, Niwa R, Satoh M. Improving effector functions of antibodies …. Drug Des Devel Ther. 2009;3:7-16. doi: https://www.ncbi.nlm.nih.gov/pubmed/19920917.
- Natsume A, Shimizu-Yokoyama Y, Satoh M, et al. Engineered anti-CD20 antibodies …. Cancer Sci. 2009;100(12):2411-2418. doi: 10.1111/j.1349-7006.2009.01327.x. https://www.ncbi.nlm.nih.gov/pubmed/19758394.
- Sato F, Ito A, Ishida T, et al. A complement-dependent cytotoxicity-enhancing anti-CD20 antibody …. Cancer Immunol Immunother. 2010;59(12):1791-1800. doi: 10.1007/s00262-010-0905-2. https://www.ncbi.nlm.nih.gov/pubmed/20714721.